Fluorescent Polystyrene Films for the Detection of Volatile Organic Compounds Using the Twisted Intramolecular Charge Transfer Mechanism.

نویسندگان

  • Mirko Borelli
  • Giuseppe Iasilli
  • Pierpaolo Minei
  • Andrea Pucci
چکیده

Thin films of styrene copolymers containing fluorescent molecular rotors were demonstrated to be strongly sensitive to volatile organic compounds (VOCs). Styrene copolymers of 2-[4-vinyl(1,1'-biphenyl)-4'-yl]-cyanovinyljulolidine (JCBF) were prepared with different P(STY-co-JCBF)(m) compositions (m% = 0.10-1.00) and molecular weights of about 12,000 g/mol. Methanol solutions of JCBF were not emissive due to the formation of the typical twisted intramolecular charge transfer (TICT) state at low viscosity regime, which formation was effectively hampered by adding progressive amounts of glycerol. The sensing performances of the spin-coated copolymer films (thickness of about 4 µm) demonstrated significant vapochromism when exposed to VOCs characterized by high vapour pressure and favourable interaction with the polymer matrix such as THF, CHCl₃ and CH₂Cl₂. The vapochromic response was also reversible and reproducible after successive exposure cycles, whereas the fluorescence variation scaled linearly with VOC concentration, thus suggesting future applications as VOC optical sensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and solvatochromic fluorescence of biaryl pyrimidine nucleosides.

Fluorescent pyrimidine analogs containing a fused biphenyl unit were prepared in high yields using stereoselective N-glycosylation and Suzuki-Miyaura cross-coupling reactions. The resulting "push-pull" fluorophores exhibit highly solvatochromic emissions from twisted intramolecular charge-transfer (TICT) states.

متن کامل

Intramolecular charge transfer and dual fluorescence of 4-(dimethylamino)benzonitrile: ultrafast branching followed by a two-fold decay mechanism.

In this contribution we present new experimental and theoretical results for the intramolecular charge transfer (ICT) reaction underlying the dual fluorescence of 4-(dimethylamino)benzonitrile (DMABN), which indicate that the fully twisted ICT (TICT) state is responsible for the time-resolved transient absorption spectrum while a distinct partially twisted ICT (pTICT) structure is suggested for...

متن کامل

Substituted position effect on twisted intramolecular charge transfer of 1- and 2-anthracene aromatic carboxamides as chemosensors based on linear polyether.

Bi-chromophoric compounds linked to linear polyether N,N'-[oxybis(3-oxapentamethyleneoxy-2-phenyl)]-bis(1-anthracenecarboxamide) (1(4)) and its analogues (1(5), 2(4) and 2(5)) were synthesized. Their photochemical properties and complexation actions were investigated in acetonitrile. These fluoroionophores have shown weak emissions in the absence of guest ions, resulting in a twisted intramolec...

متن کامل

Photoinduced Intramolecular Charge Transfer in Donor-Acceptor Biaryls and Resulting Applicational Aspects Regarding Fluorescent Probes and Solar Energy Conversion

Photoinduced Intramolecular Charge Transfer in Donor-Acceptor Biaryls and Resulting Applicational Aspects Regarding Fluorescent Probes and Solar Energy Conversion This study is focused on the effects of photoinduced intramolecular charge transfer (CT) in three differently twisted donor-acceptor (D-A) biphenyls. Taking into account another pair of differently twisted D-A biaryls new universal in...

متن کامل

Mechanistic Modeling of Organic Compounds Separation from Water via Polymeric Membranes

A mathematical model considering mass and momentum transfer was developed for simulation of ethanol dewatering via pervaporation process. The process involves removal of water from a water/ethanol liquid mixture using a dense polymeric membrane. The model domain was divided into two compartments including feed and membrane. For a description of water transport in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 22 8  شماره 

صفحات  -

تاریخ انتشار 2017